

Are CMIP3/CMIP5 GCMs able to simulate observed seasonal rainfall change over the Western Himalayan region of India?

Jitendra Kr Meher

jitendra.meher29@gmail.com

Contributors

- ✓ Lalu Das
- ✓ Abdelkader Mezghani³
 ✓ Rasmus E. Benestad³

¹Dept. of Agricultural Meteorology & Physics, Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India- 741252 ³Meteorologisk Institutt, Met. No. Oslo, Norway

Study Region

NVE

Winter Abrupt precipitation in the form of rainfall and snow, which is caused by the extra-tropical storm known as Western Disturbances (WD)

Summer Frequency of WD decreases. So, the Indian Himalayan region gets less rainfall during the summer as compared to the winter season.

Monsoon Rainfall received from the south west-monsoon. As the summer monsoon moves from westward, the rainfall decreases from east to west due increasing altitude of mountains.

INDICE Work Package-II, BCKV

Background

The study of rainfall change scenario over Himalayan region is very important as the livelihood of more than 1.27 billion people and the vast biodiversity of India highly depended on melt water from the Himalaya.

Detection of climate change information over this region is very challenging task due to its complex topography, sparse data availability and quality of data, although there are some stations with good quality data predominantly over the period 1901-1970, but after 1970 the data quality is sparse and inconsistent containing huge missing records.

08-09-2016

Precipitation shows a dipole like patterns with one moderate peak (15-20% of annual rainfall) during winter (DJF) while the higher peak (39%-71% of annual rainfall) is shown during monsoon (JJAS).

INDICE Work Package-II, BCKV

Background

Rainfall over the Himalayan region is not consistent with that of all-India rainfall the reason may be the loss of tele-connection towards the ending of 1960s (Bhutiyani et al. 2007).

Rainfall has insignificant increasing trend in winter and Significant decreasing trend in monsoon and annual in the last century. Over the Uttarakhand region of the WHR the rainfall has shown a decreasing trend at various observatory sites (Basistha et al. 2009).

The GCMs neither able to simulate the observed climatology nor they can able to depict inter annual variability of rainfall correctly. Hence, appropriate statistical post processing techniques are required to improve precipitation prediction using GCMs over a region.

Background

NDICE Work Package-II, BCKV

GCMs are able to capture the mean annual cycle of the observation data coherently but most of the times failed to capture its long term trend. Over the North WHR the latest generation CMIP5 GCMs failed to capture the long term decreasing trend as shown by various observational gridded data sets (Palazzi et al. 2015)

Demand for the reliable and accurate future precipitation change scenarios on the regional, sub-regional and local scales particularly in the mountain region for implementing any suitable adaptation and mitigation policies to combat climate change.

- 1. Observed data from India Meteorological Department (IMD)
- -> Both rain gauge and gridded rainfall data (0.25×0.25)
- -> Rain gauge: Monthly data, Gridded: Daily data
- -> Time period for Rain gauge: 1901-2005, Gridded data: 1901-2013
- 2. General Circulation Model (GCM) data from Coupled Model Intercomparison Project-3 (CMIP3) and CMIP5
- -> 13 GCMs from CMIP3 and 42 GCMs from CMIP5
- -> Both CMIP3 and CMIP5 GCMs have 2.5×2.5 degree resolution
- -> All GCMs: Monthly rainfall data

-> Time period for GCM rainfall data: 1901-2100.

-> 1901-2000: Past rainfall analysis and evaluation purpose

-> 2001-2100: Construction of future rainfall scenarios ->CMIP3: SRESA1B, CMIP5: RCP ->Out 42 GCMs under different RCP scenario of CMIP5 there are 23 common GCMs common in all RCP

- 1. To identify "reference rain-gauge stations" for quantifying centennial scale annual and seasonal rainfall change over the WHR.
- 2. To evaluate the CMIP3 and CMIP5 GCMs and ranking them based on their abilities to simulate the observed rainfall
- 3. To <u>construct future rainfall change pattern</u> from the top ranking GCMs using all available Representative Concentration Pathways (RCPs) and emission scenarios.

Methods

- Missing data substitution: k-Nearest Neighbor (kNN), Markov Chain Monte Carlo (MCMC) multiple imputation and Indian meteorological department (IMD) interpolated gridded data substitution.
- ✓ Trend analysis: Mann-Kendall trend test and Sen's slope estimator test.
- ✓ Change point detection: Pettitt's test.
- Evaluation GCMs: GCMs were ranked according to their efficiency to simulate the observed annual and seasonal rainfall data

INDICE Work Package-II, BCKV

 Construction of future rainfall scenarios: Top ranked model output and their MME in the future time period.

Objective 1

To identify "reference rain-gauge stations" for quantifying centennial scale annual and seasonal rainfall change over the WHR.

- Took a complete data set of 50-years starting from 1901-1950 with no missing values. In a random manner the data set were inserted with 20% missing values.
- 2. The data generated from each of the method namely kNN, MCMC and IMD substitution were used to fill those 20% missing values.
- 3. We compared the estimated missing values from each method with the intentionally removed observed values for 22 rain gauge stations.
- To visualize the efficiency of each method, different agreement indices (Correlation and d-Index) and error indices (standard deviation and Normalised root mean squared error) are used.

■ kNN ■ Imput ■ IMDg

Comparison of correlation coefficient (r) among three methods of missing data substitution during the period 1901-1950.

INDICE

INDICE Work Package-II, BCKV

Comparison of d-index among three methods of missing data substitution during the period 1901-1950.

INDICE

INDICE Work Package-II, BCKV

Comparison of Normalised Root Mean Squared Error (NRMSE) among three methods of missing data substitution during the period 1901-1950.

INDICE

INDICE Work Package-II, BCKV

Comparison of 'Standard deviation' among three methods of missing data substitution during the period 1901-1950.

INDICE

IMD gridded data Substitution

INDICE Work Package-II, BCKV

IMD rain gauge station data without missing values: Missing values were substituted by the IMD gridded data

INDICE Work Package-II, BCKV

IMD rain gauge station data with missing values

INDICE Work Package-II, BCKV

Results, Objective 1

	Lat.	Long.	Alt.	A	nnual	Mo	onsoon	W	'inter
1902-2000, mm/year	(deg)	(deg.)	(m)	(Ja	n-Dec)	(Ju	n-Sep)	(De	ec-Feb)
				Sen's	Shift	Sen's	Shift	Sen's	Shift
				Slope	Year (PT)	Slope	Year (PT)	Slope	Year (PT)
ALMORA	29.60	79.67	1676	-0.76	1927	-0.41	1925	-0.06	1944
BANJAR	31.63	77.35	1356	-1.07	1967	-1.26	1967	-0.22	1961
BERINAG	29.80	80.07	1676	-0.73	1968	-0.40	1969	-0.32	1949
BIRONKHOL	30.20	79.20	1524	-3.03	1967	-2.08	1967	-0.58	1964
DEHRA GOPIPUR	31.90	76.22	503	0.62	1945	0.96	1991	0.01	1958
HALDWANI	29.22	79.52	348	-4.84	1972	-4.80	1972	-0.42	1944
HAMIRPUR	31.70	76.50	738	2.19	1941	0.99	1920	0.31	1980
KANGRA	32.13	76.19	733	0.81	1941	0.17	1941	-0.04	1935
KARNAPRAYAG	30.27	79.25	792	-1.59	1971	-2.03	1970	-0.39	1970
KASAULI	30.90	76.96	1927	-2.10	1991	-2.15	1994	-0.34	1991
KASHIPUR	29.22	78.93	183	-4.67	1971	-3.95	1978	-0.31	1961
KATHGODAM	29.27	79.53	518	-4.11	1964	-4.10	1969	-0.08	1961

 Results of MK test with Sen's slope (at 5% level) and Shift Year (Pettitt's Test)

for the rain gauge stations during the period 1902-2000.

	Lat.	Long.	Alt.	A	nnual	Mo	onsoon	W	inter
1902-2000, mm/year	(deg)	(deg.)	(m)	(Ja	n-Dec)	(Ju	n-Sep)	(De	ec-Feb)
				Sen's	Shift	Sen's	Shift	Sen's	Shift
				Slope	Year (PT)	Slope	Year (PT)	Slope	Year (PT)
ALMORA	29.60	79.67	1676	-0.76	1927	-0.41	1925	-0.06	1944
BANJAR	31.63	77.35	1356	-1.07	1967	-1.26	1967	-0.22	1961
BERINAG	29.80	80.07	1676	-0.73	1968	-0.40	1969	-0.32	1949
BIRONKHOL	30.20	79.20	1524	-3.03	1967	-2.08	1967	-0.58	1964
DEHRA GOPIPUR	31.90	76.22	503	0.62	1945	0.96	1991	0.01	1958
HALDWANI	29.22	79.52	348	-4.84	1972	-4.80	1972	-0.42	1944
HAMIRPUR	31.70	76.50	738	2.19	1941	0.99	1920	0.31	1980
KANGRA	32.13	76.19	733	0.81	1941	0.17	1941	-0.04	1935
KARNAPRAYAG	30.27	79.25	792	-1.59	1971	-2.03	1970	-0.39	1970
KASAULI	30.90	76.96	1927	-2.10	1991	-2.15	1994	-0.34	1991
KASHIPUR	29.22	78.93	183	-4.67	1971	-3.95	1978	-0.31	1961
KATHGODAM	29.27	79.53	518	-4.11	1964	-4.10	1969	-0.08	1961

INDICE Work Package-II, BCKV

Results of MK test with Sen's slope (at 5% level) and Shift Year (Pettitt's Test)

for the rain gauge stations during the period 1902-2000.

1902-2000,	Lat.	Long.	Alt.	Anr	nual	Mon	soon	Wir	nter
mm/year	(deg)	(deg.)	(m)	(Jan-	·Dec)	(Jun-	-Sep)	(Dec	-Feb)
				Sen's	Shift	Sen's	Shift	Sen's	Shift
				Slope	Year (PT)	Slope	Year (PT)	Slope	Year (PT)
KOTDWARA	29.75	78.53	399	-7.71	1969	-7.02	1969	-0.58	1969
KOTKHAI	31.12	77.53	1881				21	-0.62	1967
LANSDOWNE	29.83	78.68	1532		VV I	nter	1	-0.65	1961
NURPUR	32.30	75.90	643	17 St	tation: De	ecreasing	g trend 7	-0.22	1994
OKHIMATH	30.50	79.25	1861	5 St	ation: In	creasing	trend ⁹	-0.06	1927
PALAMPUR	32.12	76.53	1472	-3.03	1701	-3.27	1703	-0.71	1958
RAJPUR	30.40	78.10	732	-11.38	1967	-10.50	1967	-0.54	1942
RAMNAGAR	29.40	79.12	360	-5.33	1971	-4.94	1971	-0.45	1964
RANIKHET	29.63	79.43	1824	0.29	0.29 1971 0.25 1971		1971	-0.08	1944
SRINAGAR	30.22	78.78	564	-1.61	1957	-1.00	1954	-0.29	1961

INDICE Work Package-II, BCKV

Results of MK test with Sen's slope (grey colour: Significant 5% level) and Shift Year (Pettitt's Test) for the rain gauge stations during the period 1902-2000.

1902-2000,	Anr	nual	Mon	soon	Wir	nter
mm/year	(Jan-	Dec)	(Jun-	-Sep)	(Dec	-Feb)
	Sen's	Shift	Sen's	Shift	Sen's	Shift
	Slope	Year (PT)	Slope	Year (PT)	Slope	Year (PT)
WHR-1902-2005	-2.89	1971	-2.83	1971	-0.21	1961
WHR-1902-71	2.66	-	2.02	-	-0.01	-
WHR-1975-2000	-3.85	-	-2.35	-	0.50	-
WHR-1902-61	4.21*	-	2.92	-	0.37	_
WHR-1962-2000	-5.5	-	-6.02*	_	0.55	_
WHR-1902-2000	-2.23	_	-2.42*	_	-0.2	_

Results of MK test with Sen's slope (at 5% level) and Shift Year (Pettitt's Test) for the regional averaged rainafll during the period 1902-2000.

INDICE Work Package-II, BCKV

Regional Average

Annual Rainfall

08-09-2016

NVE

Regional Average

Monsoon Rainfall

INDICE

Regional Average

Winter Rainfall

INDICE

INDICE Work Package-II, BCKV

- 1. Global climate shift or weakening of monsoon circulation
- 2. Reduction in forest cover and change in land use including introduction of irrigated agriculture
- 3. Increasing aerosol due to anthropogenic activity

Climatic Change (2007) 85:159–177 DOI 10.1007/s10584-006-9196-1

Abstract The study reveals significant rise in air temperature in the northwest Himalayan (NWH) region by about 1.6°C in the last century, with winters warming at a faster rate. The diurnal temperature range (DTR) has also shown a significantly increasing trend. This appears to be due to rise in both the maximum as well as minimum temperatures, with the maximum increasing much more rapidly. The results are in contrast to the findings in the Alps and Rockies where the minimum temperatures have increased at an elevated rate. Conforming to the global trends, the study confirms episodes of strong warming and cooling in the NWH in the last century. Real warming appears to have started from late-1960s and highest rate of increase was experienced in the last two decades. The study also shows teleconnections between temperatures and an epochal behaviour of the precipitation till late-

1960s. These teleconnections seem to have weakened gradually since then and rapidly in the post-1991 period, indicating the waning effect of the natural forcings in this period.

To evaluate the CMIP3 and CMIP5 GCMs and ranking them based on their abilities to simulate the observed rainfall

CMIP	3					
	SI.No.	Model	Center	Atmospheric resolution (Lon. ×Lat.)	Source	A1B
	1	BCCR-BCM2.0	Bjerknes Centre for Climate Research, Norway	T63,L31	Déqué et al., 1994	
	2	CCCMA- CGCM3.1 (T47)	Canadian Centre for Climate Modelling and Analysis, Canada	T47 (3.75×3.75), L31	Flato, 2005	
-	3	CNRM-CM3	Météo-France/Centre National de Recherches Météorologiques, France	T63 (2.8×2.8), L45	Déqué et al., 1994	
	4	CSIRO-MK3.0	Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atmospheric Research, Australia	T63, L18	Gordon et al., 2002	
	5	CSIRO-MK3.5	Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atmospheric Research, Australia	T63, L18	Gordon et al., 2010	
	6	GFDL-CM2.0	U.S. Department of Commerce/ National Oceanic and Atmospheric Administration (NOAA)/Geophysical Fluid Dynamics Laboratory (GFDL), USA	2.5×2.0, L24	GFDL GAMDT, 2004	
	7	GFDL-CM2.1	U.S. Department of Commerce/ National Oceanic and Atmospheric Administration (NOAA)/Geophysical Fluid Dynamics Laboratory (GFDL), USA	2.5×2.0, L24	GFDL GAMDT, 2004	
-	8	INGV- ECHAM4	Max-Planck-Institute for Meteorology, Hamburg, Germany.	T42, L19	Roeckner et al., 1996	
-	9	INM-CM3.0	Institute for Numerical Mathematics, Russia	5×4, L21	Galin et al., 2003	
-	10	IPSL-CM4	Institut Pierre Simon Laplace, France	2.5×3.7	Hourdin et al., 2006	
	11	MIROC3.2 (hires)	Center for Climate System Research (University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC), Japan	T10F 13	MIPS	
	12	UKMO- HadCM3	Hadley Centre for Climate Prediction and Research/Met Offi ce, UK	3.75×2.5, L19	2000	CA .
-	13	UKMO- HadGEM1	Hadley Centre for Climate Prediction and Research/Met Offi ce, UK	1.875×1.25, L38	Martin et al., 2004	

	IP5													N.
		•											, GU	
												nIP	5	
i.No	Model	Center	Atmospheric resolution	Source	RCP 2.6	RCP 4.5	RCP 6.0	RCP 8.5	21	GISS-E2-H-p2	NASA Goddard Institute for Space Studies, USA	Υ	chmidt et al. (2014)	
	ACCESS1-0	Commonwealth Scientific and Industrial	(Lon. ×Lat.) 1.875 × 1.25	Bi et al. (2013)					22	GISS-E2-H-p3	NASA Goddard Institute for Space Studies, USA	×2.0	Schmidt et al. (2014)	
,	ACCESS1 3	(CSIRO-BOM), Australia Commonwealth Scientific and Industrial	1 875 × 1 25	Bi et al. (2013)					23	GISS-E2-H-CC GISS-E2-R-p1	NASA Goddard Institute for Space Studies, USA	2.5 ×2.0 2.5	(2014) Schmidt et al.	
	neelb51.5	Research Organization-Bureau of Meteorology (CSIRO-BOM), Australia	1.075 × 1.25	Bi et ul. (2013)					25	GISS-E2-R-p2	NASA Goddard Institute for Space Studies, USA	×2.0 2.5	(2014) Schmidt et al.	
	bcc-csm1-1	Beijing Climate Center, China Meteorological Administration	2.8×2.8	Wu et al. (2013)					26	GISS-E2-R-p3	NASA Goddard Institute for Space Studies, USA	×2.0 2.5 ×2.0	(2014) Schmidt et al. (2014)	
	bcc-csml-l- m BNU-FSM	Administration College of Global Change and Earth System	1.12×1.12	Wu et al. (2013)					27	GISS-E2-R-CC	NASA Goddard Institute for Space Studies, USA	2.5 ×2.0	Schmidt et al. (2014)	
	G FOM	Science, Beijing Normal University, China	2.0 ~2.0						28	HadGEM2-AO	Met Office Hadley Center, UK	1.88×	Collins et al.	
	CanESM2	Canadian Centre for Climate Modeling and Analysis	2.8 ×2.8	von Salzen et al. (2013)					29	HadGEM2-CC	Met Office Hadley Center, UK	1.88 × 1.25	Martin et al. (2011)	
	CESM1-BGC	Community Earth System Model Contributors	1.25 ×0.94	(2012) Hurrell et al					30	HadGEM2-ES	Met Office Hadley Center, UK	1.88 × 1.25	Bellouin et al. (2011)	
	CESM1-BGC	Community Earth System Model Contributors	1.25 ×0.94	(2013) Hurrell et al.					31	inmcm44	Institute for Numerical Mathematics, Russia	2.0 × 1.5	Volodin et al. (2010)	
0	CAM5 CMCC-CM	Centro Euro-MediterraneopeI Cambiamenti	0.75 ×0.75	(2013) Scoccimarro et					32	IPSL-CM5A- LR	Institut Pierre Simon Laplace, France	3.75 × 1.8	Hourdin et al. (2013)	
1	CMCC-CMS	Climatici Centro Euro-Mediterraneopel Cambiamenti	1.88×1.87	al. (2011) Davini et al.					34	MR IPSL-CM5B-	Institut Pierre Simon Laplace, France	2.5 × 1.25 3.75 ×	(2013) Hourdin et al.	
2	CNRM-CM5	Climatici National Centre of Meteorological Research,	1.4 ×1.4	(2013) Voldoire et al.					35	LR MIROC5	Atmosphere and Ocean Research Institute (The University of Tokyo), Nationa	1.8 1 1.4 ×	(2013) Watanabe et	
3	CSIRO-Mk3- 6-0	Commonwealth Scientific and Industrial Research Organization Queensland Climate	1.8×1.8	Rotstayn et al. (2012)					26	MIDOC ESM	Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology	1.4	al. (2010)	
4	EC-EARTH	Change Centre of Excellence, Australia EC-EARTH consortium	1.13×1.12	Hazeleger et al.					50	WIIKUU-ESM	Ocean Research Institute (The University of Tokyo), and National Institute fo Environmental Studies	2.8 × 2.8	al. (2011)	
5	FGOALS-g2	LASG, Institute of Atmospheric Physics, Chinase Academy of Sciences	2.8 ×2.8	(2012) Li et al. (2013)					37	MIROC-ESM- CHEM	Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for	2.8×2.8	Watanabe et al. (2011)	
6	FIO-ESM	The First Institute of Oceanography, SOA, China	2.81 ×2.79	Song et al. (2012)					38	MPI-ESM-LR	Environmental Studies Max Planck Institute for Meteorology, Germany	1.88× 1.87	Giorgetta et al. (2013)	
7	GFDL-CM3	NOAA Geophysical Fluid Dynamics Laboratory, USA	2.5 ×2.0	Delworth et al. (2006)					39	MPI-ESM-MR	Max Planck Institute for Meteorology, Germany	1.88 × 1.87	Giorgetta et al. (2013)	
8	GFDL- ESM2G	NOAA Geophysical Fluid Dynamics Laboratory, USA	2.5 ×2.0	Delworth et al. (2006)					40	MRI-CGCM3	Meteorological Research Institute, Japan	1.1 × 1.1	Yukimoto et al. (2012)	
9	GFDL- ESM2M	NOAA Geophysical Fluid Dynamics Laboratory, USA	2.5×2.0	Delworth et al. (2006)					41	NorESM1-M	Norwegian Climate Center, Norway	2.5 × 1.9	Bentsen et al. (2013)	
0	GISS-E2-H- p1	NASA Goddard Institute for Space Studies, USA	2.5 ×2.0	Schmidt et al. (2014)					42	NorESM1-ME	Norwegian Climate Center, Norway	2.5 × 1.9	Tjiputra et al. (2013)	

Evaluation of GCMs

Evaluation of GCMs

Trend analysis

中

NVE

08-09-2016

								Lo	ng terr	n			
1902-2000			Seasonal	cycle				trend	d(mm/	yr)	Spatia	l correl	ation
	ME	NRMSE %	PBIAS %	NSE	d	r	KGE	Annual	JJAS	DJF	Annual	JJAS	DJF
BCCR-BCM2.0	-81.08	87.7	-62.1	0.16	0.58*	0.95*	0.05	0.04	-0.25	0.36	-0.10	-0.09	0.14
CCCma-													
CGCM3.1(T47)	-72.39	91.7	-55.4	0.08	0.50*	0.89*	0.02	0.49	0.36	0.10	-0.17	0.01	0.79*
CNRM-CM3	-55.57	81.7	-42.6	0.27	0.58*	0.98*	0.13	-0.58	0.04	-0.67	-0.07	-0.02	0.12
CSIRO-Mk3.0	-87.37	101.4	-66.9	-0.12	0.48	0.75*	-0.10	0.07	0.41	-0.19	-0.04	0.04	-0.04
CSIRO-Mk3.5	-79.29	95.7	-60.7	0.00	0.50*	0.75*	-0.02	-0.13	-0.18	-0.25	-0.03	0.04	0.57*
GFDL-CM2.0	-46.90	64.6	-35.9	0.54*	0.79*	0.94*	0.34	0.27	-0.08	0.00	0.02	0.01	0.82*
GFDL-CM2.1	-30.44	56.9	-23.3	0.65*	0.84*	0.92*	0.46	-0.29	-1.20	0.24	-0.17	-0.02	0.39
INGV-ECHAM4	-60.49	71.7	-46.3	0.44	0.73*	0.96*	0.24	0.12	0.12	-0.15	-0.11	0.02	0.56*
MIROC3.2(hires)	-53.10	77.2	-40.7	0.35	0.65*	0.93*	0.19	-0.69	-0.67	-0.26	0.01	0.04	0.86*
UKMO-HadCM3	-35.16	54.4	-26.9	0.68*	0.87*	0.92*	0.49	-0.67	-1.76	0.15	-0.22	-0.13	0.67*
UKMO-HadGEM1	-78.79	89.8	-60.3	0.12	0.55*	0.92*	0.03	-0.12	0.28	0.26	-0.09	0.00	0.85*

INDICE Work Package-II, BCKV

Evaluation of CMIP3 GCMs

		1902-2000,CMIP3	Seas
S			ME
3ČK		BCCR-BCM2.0	10
<u>–</u>		CCCma-CGCM3.1(T47)	7
e-l		CNRM-CM3	5
gey		CSIRO-Mk3.0	11
ack		CSIRO-Mk3.5	9
A P		GFDL-CM2.0	3
'or		GFDL-CM2.1	1
3		INGV-ECHAM4	6
ICE	[MIROC3.2(hires)	4
ND		UKMO-HadCM3	2
_			

1902-2000,CMIP3	Seas	sonal cycle					Long te	rm tre	nd	Spatial	correl	ation		
	ME	NRMSE %	PBIAS %	NSE	d r	KGE	Annual	JJAS	DJF	Annual	JJAS	DJF	Sum of Rank	Overall Rank
BCCR-BCM2.0	10	7	10	7	63	7	7	4	11	7	6	9	94	9
CCCma-CGCM3.1(T47)	7	9	7	9	8 7	9	11	10	6	9	3	4	99	10
CNRM-CM3	5	6	5	6	61	6	3	7	10	5	5	10	75	6
CSIRO-Mk3.0	11	11	11	11	98	11	8	11	1	4	1	11	108	11
CSIRO-Mk3.5	9	10	9	10	88	10	5	5	3	3	1	6	87	7
GFDL-CM2.0	3	3	3	3	34	3	10	6	5	1	3	3	50	3
GFDL-CM2.1	1	2	1	2	26	2	4	2	8	10	5	8	53	4
INGV-ECHAM4	6	4	6	4	42	4	9	8	2	8	2	7	66	5
MIROC3.2(hires)	4	5	4	5	55	5	1	3	4	2	1	1	45	1
UKMO-HadCM3	2	1	2	1	16	1	2	1	7	11	7	5	47	2
UKMO-HadGEM1	8	8	8	8	76	8	6	9	9	6	4	2	89	8

Ranking of CMIP3 GCMs

			F	<u>Re</u>	SU	lts), (Dbj	ec	tiv	/e 2	2	
1902-2000,CMIP5			Seasonal C	Cycle				Lon	g term tre	end	Spati	ial correla	ation
	ME	NRMSE %	PBIAS %	NSE	d	r	KGE	Annual	JJAS	DJF	Annual	JJAS	DJF
ACCESS1-0	-14.94	53.3	-11.4	0.69*	0.87*	0.92*	0.52	-0.489	-0.578	0.170	-0.182	0.001	0.7
ACCESS1.3	-40.27	75	-30.8	0.39	0.68*	0.82*	0.26	-0.649	-0.809	-0.104	-0.142	-0.096	0.
bcc-csm1-1-m	-68.97	89.7	-52.8	0.12	0.51*	0.86*	0.05	0.055	0.477	0.007	-0.059	-0.107	0.
BNU-ESM	-62.58	80.2	-47.9	0.3	0.64*	0.90*	0.16	0.906	0.652	0.197	-0.106	0.014	0.
CanESM2	-88.1	101.1	-67.5	-0.12	0.49	0.79*	-0.1	-0.314	-0.302	-0.104	-0.137	0.017	-0.4
CCSM4	-4.11	24.4	-3.1	0.94*	0.98*	0.99*	0.79	0.199	0.307	0.017	-0.184	-0.128	0.6
CESM1-BGC	-4.64	24.8	-3.6	0.93*	0.98*	0.99*	0.78	-0.476	-0.220	-0.226	-0.186	-0.122	0.6
CESM1-CAM5	-25.19	34.2	-19.3	0.87*	0.96*	0.99*	0.65	1.609	1.205	0.235	-0.154	-0.071	0.8
CMCC-CM	-59.07	93.8	-45.2	0.04	0.42	0.66	-0.01	0.791	0.629	0.348	0.036	-0.018	0.8
CNRM-CM5	-45.51	72.3	-34.9	0.43*	0.70*	0.97*	0.24	0.129	0.002	0.054	-0.112	-0.088	0.7
EC-EARTH	-31.01	55.9	-23.7	0.66*	0.86*	0.91*	0.49	0.770	0.839	-0.060	-0.091	0.032	0.8
FIO-ESM	-51.92	85.9	-39.8	0.19	0.52	0.76	0.11	0.375	0.336	-0.050	-0.102	0.021	0.:
GFDL-CM3	-39.84	71.3	-30.5	0.45*	0.71*	0.85*	0.3	0.084	-0.353	0.136	-0.169	0.002	0.7
GFDL-ESM2G	-44.6	60.3	-34.2	0.6*	0.83*	0.91*	0.42	-0.354	-0.660	0.058	-0.164	0.008	0.:
GFDL-ESM2M	-49.67	67.4	-38	0.5*	0.77*	0.91*	0.32	0.126	0.231	0.070	-0.151	0.013	0.
HadGEM2-AO	-16.08	48.6	-12.3	0.74*	0.90*	0.93*	0.57	-1.363	-0.536	-0.624	-0.193	-0.032	0.6
HadGEM2-CC	-18.53	56	-14.2	0.66*	0.85*	0.89*	0.51	-0.727	-0.853	0.040	-0.178	-0.033	0.6
HadGEM2-ES	-21.81	54.9	-16.7	0.67*	0.86*	0.91*	0.5	-0.853	-1.007	-0.006	-0.169	-0.026	0.6
inmcm4	-49.73	79	-38.1	0.32	0.62*	0.86*	0.19	-0.288	-0.206	0.016	-0.129	0.013	0.7
IPSL-CM5A-MR	-87.46	107.3	-67	-0.26	0.44	0.34	-0.27	-0.042	-0.313	0.325	-0.106	0.003	0.7
MIROC-ESM	16.6	47.5	12.7	0.75*	0.91*	0.91*	0.62	-0.015	0.025	0.000	-0.198	-0.064	0.2
MIROC-ESM-CHEM	11.49	46.6	8.8	0.76*	0.91*	0.92*	0.63	1.086	0.383	0.374	-0.190	-0.055	0.
MIROC5	-27.84	44.4	-21.3	0.78*	0.92*	0.98*	0.55	-0.389	-0.287	-0.308	-0.179	-0.046	0.8
MPI-ESM-LR	-55.03	75.8	-42.1	0.37	0.67*	0.95*	0.2	0.206	0.031	0.192	-0.087	-0.020	0.7
MPI-ESM-MR	-50.02	77.6	-38.3	0.34	0.64*	0.90*	0.2	-0.203	0.147	0.163	-0.081	-0.021	0.7
NorESM1-M	-20.88	42.8	-16	0.8*	0.93*	0.95*	0.62	-0.265	-0.738	0.080	-0.139	-0.020	0.
NorESM1-ME	-17.92	40.1	-13.7	0.82*	0.94*	0.95*	0.66	0.085	0.604	0.127	-0.140	-0.020	0.

>
$\overline{\langle}$
Ċ
$\widetilde{\mathbf{S}}$
<u>`</u>
<u> </u>
ά)
50
Ĩ
Ň
C
J
Δ
\checkmark
0
\geq
>
ш
$\overline{\Box}$
\leq
2

08-09-2016

Ranking of CMIP5 GCMs

)2-2000,CMIP5	Seas	sonal cycle						Long te	rm tre	nd	Spatial	correla	ation		
Z		ME	NRMSE %	PBIAS %	NSE	d	r	KGE	Annual	JJAS	DJF	Annual	JJAS	DJF	Sum of Rank	Overall Rank
	CESS1-0	4	10	4	10	8	6	9	5	6	20	12	4	8	106	5
	ACCESS1.3	15	18	15	17	15	12	16	4	3	3	8	11	14	151	14
	bcc-csm1-1-m	25	24	25	23	20	10	22	15	22	9	2	12	15	224	24
	BNU-ESM	24	22	24	21	17	8	20	25	25	22	6	3	17	234	26
	CanESM2	27	26	27	25	21	13	24	9	10	2	8	2	22	216	23
	CCSM4	1	1	1	1	1	1	1	20	19	11	12	14	12	95	3
	CESM1-BGC	2	2	2	2	1	1	2	6	12	1	13	13	10	67	1
	CESM1-CAM5	11	3	11	3	2	1	4	27	27	24	9	9	3	134	11
	CMCC-CM	23	25	23	24	23	15	23	24	24	26	1	5	2	238	27
<u> </u>	CNRM-CM5	17	17	17	16	14	3	17	19	14	13	6	10	5	168	17
	EC-EARTH	13	12	13	12	9	7	12	23	26	5	4	1	1	138	12
	FIO-ESM	21	23	21	22	19	14	21	22	20	6	5	2	13	209	22
	GFDL-CM3	14	16	14	15	13	11	15	16	8	18	11	4	7	162	16
	GFDL-ESM2G	16	14	16	13	11	7	13	8	5	14	10	3	13	143	13
	GFDL-ESM2M	18	15	18	14	12	7	14	18	18	15	9	3	16	177	19
	HadGEM2-AO	5	9	5	9	7	5	7	1	7	23	13	6	11	108	7
	HadGEM2-CC	8	13	8	12	10	9	10	3	2	12	12	6	10	115	8
	HadGEM2-ES	10	11	10	11	9	7	11	2	1	7	11	6	9	105	4
	inmcm4	19	21	19	20	18	10	19	10	13	10	7	3	4	173	18
	IPSL-CM5A-MR	26	27	26	26	22	16	25	13	9	25	6	4	7	232	25
	MIROC-ESM	6	8	6	8	6	7	6	14	15	8	14	8	18	124	10
	MIROC-ESM-CHEM	3	7	3	7	6	6	5	26	21	27	13	8	20	152	15
	MIROC5	12	6	12	6	5	2	8	7	11	4	12	7	1	93	2
	MPI-ESM-LR	22	19	22	18	16	4	18	21	16	21	4	5	6	192	21
	MPI-ESM-MR	20	20	20	19	17	8	18	12	17	19	3	5	4	182	20
	NorESM1-M	9	5	9	5	4	4	6	11	4	16	8	5	21	107	6
	NorESM1-ME	7	4	7	4	3	4	3	17	23	17	8	5	19	121	9

A. 70 INDICE Work Package-II, BCKV D. Latitude (⁰N) 52 12 G.

曲

NVE

INDICE Work Package-II, BCKV

Multi Model Ensemble

-									
	Annual		M	onsoon (JJA	AS)	Winter (DJF)			
OBS	MME- CMIP3	MME- CMIP5	OBS	MME- CMIP3	MME- CMIP5	OBS	MME- CMIP3	MME- CMIP5	
-103.2	-88.7	105.4*	-37.7	-50.7*	110.5*	57.6	3.5	-39.0	
-61.3	-34.3	-63.7	-33.9	-48.3	-81.0	-32.8	18.7	-22.9	
-3.85	-34.0	-76.1	-1.6	-48.0*	-65.1	50.4	-19.0	-4.2	
	OBS -103.2 -61.3 -3.85	AnnualOBSMME- CMIP3-103.2-88.7-61.3-34.3-3.85-34.0	AnnualOBSMME- MME- CMIP3MME- CMIP5-103.2-88.7105.4*-61.3-34.3-63.7-3.85-34.0-76.1	Annual Model OBS MME- CMIP3 MME- CMIP5 OBS -103.2 -88.7 105.4* -37.7 -61.3 -34.3 -63.7 -33.9 -3.85 -34.0 -76.1 -1.6	Annual Momeson (JJA OBS MME- CMIP3 MME- CMIP5 OBS MME- CMIP3 -103.2 -88.7 105.4* -37.7 -50.7* -61.3 -34.3 -63.7 -33.9 -48.3 -3.85 -34.0 -76.1 -1.6 -48.0*	Annual MME- MME- OBS MME- ME- MME- ME-	Annual MME- MME- OBS MME- MME- OBS MME- MME- OBS MME- CMIP3 OBS OBS MME- OBS OBS MME- OBS OBS MME- OBS OBS MME- OBS OBS OBS MME- OBS OBS	Annual MME- MME- OBS MME- Me- MME- Me-	

Results of **MK test for observation and multi model ensemble (MME)** of GCMs under both CMIP3 and CMIP5 during the period 1911-40, 1941-70, and 1971-2000.

*=Significant at 5% level

Comparison between observation and MME trend values

NVE

Results, Objective 2

1902-2000

MME of Top ranked GCM taken for future rainfall study

Objective 3

To construct future rainfall change pattern from the top ranking GCMs using all available Representative Concentration Pathways (RCPs) and emission scenarios.

INDICE Work Package-II, BCKV

Annual Rainfall projection in the future

CMIP5

Monsoon Rainfall projection in the future

CMIP5

CMIP5

Winter Rainfall projection in the future

Future rainfall trend

Trend	Annual				JJAS					DJF					
	A1B	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A1B	RCP2.6	RCP4.5	RCP6.0	RCP8.5	A1B	RCP2.6	RCP4.5	RCP6.0	RCP8.5
2006-35	16.2	48.4	27.2	-23.3	-12.8	70.4*	76.5	9.9	1.3	18.6	-19.8	-18.9	-31.5	-14.8	-27.5
2036-65	-3.9	-18.0	59.5	60.9	148.5*	22.8	18.0	71.5	58.3	143.2*	-3.0	-28.1	9.0	7.2	-1.6
2066-95	-89.3*	106.0*	21.3	171.4*	69.0	-94.2*	51.6	12.8	135.4*	51.0*	27.9	26.0	4.9	13.0	-24.9
2006-99	2.4	33.0*	54.2*	36.2*	84.4*	17.3*	31.9*	61.9*	45.6*	89.8*	-5.5*	-0.8	-2.4	-8.7*	-11.4*

Results of MK test from multi model ensemble of different future scenarios for both CMIP3 and CMIP5 during the period 2006-35, 2036-65, 2066-2099 and 2006-99.

INDICE

*=0.05 % significant

Percentage change of annual, monsoon and winter rainfall in the 2020s, 2050s, 2080s and 2006-99 calculated from the multi model ensemble of better performing GCMs (CMIP3: A1B scenario, CMIP5: all the four RCP scenarios) with respect to the IMD base line period of 1971-2000.

INDICE Work Package-II, BCKV

Conclusions

- > Interpolated IMD gridded data are found to be more close to observation.
- Sudden variation, rather than gradual trend of rainfall in the last century

Most probable year of shift

- Winter: 1961
- Monsoon and annual: 1971
- 1902–1971: Increasing trend for annual and monsoon rainfall while decreasing trend for winter rainfall
- ➤ 1975-2000: Reversed

08-09-2016

INDICE Work Package-II, BCKV

Conclusions

GCMs able to reproduce observed annual cycle

- CMIP3: GFDL, INGV, MIROC3.2 (hires) and UKMO
- CMIP5: ACCESS1-0, CCSM4, CESM1, HadGEM2, MIROC, NorESM

Climatology

GCMs able to reproduce the winter climatology satisfactorily while annual and monsoon rainfall pattern is poorly simulated.

Better performing GCMs

- CMIP3: MIROC3.2 (hires), UKMO-HadCM3 and GFDL-CM2.0
- CMIP5: CESM1-BGC, MIROC5, CCSM4, HadGEM2-ES, and ACCESS1-0

RCP2.6 and A1B:

Winter: decrease till about 2050s, when it stabilises and increasing starts.

RCP4.5 and RCP6.0:

Winter: Stabilised increasing trend achieved earlier just after the 2020s. RCP8.5:

- Monsoon: significant increasing after the 2020s.
- Winter: non-significant decreasing trend.

Monsoon and Annual (2006-2100):

Slope_[RCP2.6]<Slope_[RCP6.0]<Slope_[RCP8.5].

08-09-2016

Dry monsoon season (5-20% deficient rainfall) and wetter (45-55%) winter season is projected under all the emission scenarios in 2020s, 50s and 80s.

